Topical Drug Products
Regulatory Requirements (USA)

Vinod P. Shah, Ph. D.,
FIP Scientific Secretary

Conference on
To and Thru the Skin
IPA – AAPS – FIP - APSTJ
Mumbai, India, February 20-21, 2009
Topical Dermatological Drug Products

- Designed to deliver drugs to the skin to prevent or to treat skin disease and/or alleviate symptomatology.
Topical Dermatological Drug Products

New Drug Applications (NDA)

- Safety: Toxicity Studies
 - Skin Irritation
 - Cutaneous Toxicity
 - Contact Sensitization
 - Contact Photodermatitis
 - Percutaneous Absorption? Teratogen?

- Efficacy: Two Well Controlled Clinical Studies
- Manufacturing Controls
- Bioavailability Studies
- In-Vitro Release Studies
Topical Dermatological Drug Products

Abbreviated New Drug Applications (ANDA)

- (Safety Studies: Skin Irritation, Cutaneous Toxicity)
- Manufacturing Controls
- *In-Vivo* Bioequivalence or Clinical Study
- *In-Vitro* Release Studies
- Inactive Ingredients: Qualitively and Quantitively "Same"
Topical Drug Products

Key steps for drug absorption

• Release of the drug from the formulation

• Drug penetration – stratum corneum permeability – rate limiting

• Thermodynamic activity is the driving force for absorption

• Formulation can alter barrier properties of the skin (permeability)
Therapeutic Equivalence

Two drug products are considered to be therapeutic equivalent (TE) if they are pharmaceutically equivalent (PE) and bioequivalent (BE); and if they can be expected to have the same clinical effect and safety profile when administered to patients under the conditions specified in the labeling.

\[\text{TE} = \text{PE} + \text{BE} \]
Pharmaceutical Equivalence

- Same active ingredient
- Same dosage form
- Same route of administration
- Identical strength
- Comparable labeling
- May differ in excipients, shape, packaging, …
Locally Acting Drug Products
Methods for determining BE

• Methods for BE (identified in 21 CFR 320.24)
 – Pharmacokinetic study
 – Pharmacodynamic study
 – Clinical study (comparative clinical trials) and
 – In vitro

• A 2003 addition to the Federal FD & C Act at Section 505 (j)(8)(A)(ii) indicates that “For a drug that is not intended to be absorbed into the bloodstream, the Secretary may assess bioavailability by scientifically valid measurements to reflect the rate and extent to which the active ingredient or therapeutic ingredient becomes available at the site of drug action”.

Methods of BE of Topical Dermatological Drug Products

Experimental Procedures

- Acceptable
 - Clinical
 - Pharmacodynamic

- Promising
 - DPK
 - Microdialysis
 - PK
 - In Vitro

- Unacceptable
 - Spectroscopy
 - Suction Blister
 - Skin Biopsy
 - Grafted Skin
 - Surface Recovery
Acceptable Methodology

Comparative Clinical Trials

- Expensive
- Large patient population
- Time consuming
- Difficult to conduct – End points have high variability
- Less sensitive

Need alternative method to assure Bioequivalence and product quality
Acceptable Methodology

Pharmacodynamic Studies

• Limited to few classes of drug products

 • Vasoconstriction (blanching) – glucocorticoids

http://www.fda.gov/cder/guidance

• Trans Epidermal Water Loss ?
Promising Methodology

Dermatopharmacokinetics (DPK)
Dermatopharmacokinetics

• Measurement of drug uptake and elimination from stratum corneum (SC) may provide a dermatokinetic means of assessing BE of two topical drug products.

• Two formulations that produce a comparable drug concentration in SC/time curves may be bioequivalent, just as two oral formulations are judged bioequivalent if they provide comparable plasma concentration/time curves.
Dermatopharmacokinetics
Mean Concentrations in Stripped Skin

Concentration (amount/sq cm) area

- Product A
- Product B

Time After Application

Assessment of dermatopharmacokinetic approach in the bioequivalence determination of topical tretinoin gel products

LK Pershing, JL Nelson, JL Corlett, SP Shrivastava, DB Hare and VP Shah

Tretinoin Research

Products:

- A. Retin-A gel, 0.025%, Ortho
- B. Tretinoin gel, 0.025%, Spear
- C. Avita tretinoin gel, 0.025%, Bertek

Clinical Findings:

- Retin-A gel = Tretinoin gel (A=B)
- Retin-A gel ≠ Avita gel (A ≠ C), but Avita gel is effective

DPK Research: To confirm and validate Clinical Findings, using A, B and C.
Tretinoin - DPK Study Comparison

Pershing Study:
- Retin-A = Generic
- Retin-A ≠ Avita
- Retin A > Avita

Franz Study:
- Retin-A ≠ Avita
- Retin A< Avita

Retin-A (Ortho); Avita (Bertek), Generic (Spear)
DPK Study

Lessons Learned

The methodology must be standardized
- drug application area
- drug removal area
Dermatopharmacokinetics

What is needed to have a confidence in DPK?

- Relevance to clinical efficacy (data)
- Ability of DPK to differentiate between formulations
- Reliability and reproducibility of the method
Promising Methodology

Microdialysis

Dermal Microdialysis (DMD)
Lidocaine in dialysates and tape-strips: cream vs. ointment
Formulations

Product similarity

– Q_1: Same components (Qualitative)

– Q_2: Same components in same amount (Quantitative)

– Q_3: Same components in same amount with the same arrangement of matter (microstructure) - Rheology
 – Can be assured with similar in vitro release profile.
Promising Methodology

In Vitro Drug Release
Can provide supportive data with other promising methods

• Vertical Diffusion Cell - Synthetic Membrane
 – Assuring product sameness – SUPAC-SS

• Information on vehicle properties, including drug delivery – “Q₃” structural phasic sameness
Decision Tree (Targeting SC)

• If Q_1 and Q_2 equivalent
 – In vitro testing
 – In vivo testing waived based on in vitro results

• If Q_1 equivalent but Q_2 difference
 – In vitro testing
 – In vivo tests if Q_2 difference is potentially significant

• If Q_1 and Q_2 differ
 – In vitro testing
 – In vivo tests required to demonstrate no formulation effect on absorption
Causes of Inequivalence
(for equal drug content)

• Application
 – Different spreading on the skin

• In the formulation
 – Drug does not leave formulation
 – Thermodynamic activity is different (suspension v. dissolved drug)

• Across the stratum corneum
 – Formulations have different effects on stratum corneum
 – One formulation prefers follicular pathway
Conclusion

• IVR can be used for BE determination of antifungal drug products
• “A simplified DPK approach, using one uptake and one elimination point” can be used for BE
• Can expensive clinical comparative BE studies be replaced with
 - DPK + IVR or
 - DPK + DMD or
 - DMD + IVR?
Thank You